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UPPAAL 
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A[] forall (i : id_t) forall (j : id_t) 
      Train(i).Cross && Train(j).Cross imply i == j  

Safety 

E<> Train(0).Cross and Train(1).Stop 
Reachability 

Train(0).Appr --> Train(0).Cross 
Liveness 

A<> ..   E[] ..  

sup: ..     inf: .. 
Limited quantitative analysis 

Performance properties 

State-space explosion 



UPPAAL SMC 
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Performance properties 

State-space explosion 

Pr[ <= 200](<> Train(5).Cross) 

Performance properties 

State-space explosion 

Pr[ <= 100](<> Train(0).Cross) >= 0.8 

Pr[ <= 100](<> Train(5).Cross) >= 
Pr[ <= 100](<> Train(1).Cross) 

Generate random runs 



Stochastic Semantics of UPPAAL TA 
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Uniform Distribution 



Stochastic Semantics of UPPAAL TA 
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Exponential Distribution 

Input enabled 
broadcast channels 

Composition = 
Repeated races between components 



Queries 
Syntax 

• Hypothesis testing 
Pr[<=100](<> expr)>=0.1 
x<=100 #<=50 [] expr <=0.5 

• Evaluation 
Pr[<=100](<> expr) 

• Comparison 
Pr[<=20](<> e1)>=Pr[<=10](<> e2) 

• Expected value 
E[<=10;1000](min: expr) 
Explicit number of runs. Min or max. 

• Simulations 
simulate 10 [<=100]{expr1,expr2} 
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SMC in UPPAAL 
• Constant Slope Timed Automata 

– Clocks may have different (integer) slope in different 
locations. 

– Branching edges with discrete probabilities (weights). 
– Beyond Priced TA, Energy TA. Equal LHA in (non-

stochastic) expressive power. 
– Beyond DTMC, beyond CTMC (with multiple rewards) 

• All features of UPPAAL supported 
– User defined functions and types 
– Expressions in guards, invariants, clock-rates, delay-

rates (rationals), and weights. 

• New GUI for plot-composing and exporting. 

11 NFM'12 

Invariants: 
x’==0 && y’==bool_fun() 
Invariants: 
x’==0 && y’==bool_fun() 
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SMC in UPPAAL 
• Constant Slope Timed Automata 

– Clocks may have different (integer) slope in different 
locations. 

– Branching edges with discrete probabilities (weights). 
– Beyond Priced TA, Energy TA, DTMC, CTMC, LHA. 

Equal LHA in (non-stochastic) expressive power. 
– Hybrid systems – by discretizing time, integrating 

differential equations! 

• All features of UPPAAL supported 
– User defined functions and types 
– Expressions in guards, invariants, clock-rates, delay-

rates (rationals), and weights. 

• New GUI for plot-composing and exporting. 
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Distributing SMC 

• Distributed SMC 

– Evaluation – trivial to parallelize 

– Hypothesis – careful 

runs # 

r 

Accept H0 

Accept H1 

Hypothesis testing: 
intuition. 
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Distributing SMC 

• Distributing hypothesis testing. 
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Decide on-the-fly Decide on-the-fly 

Bias for hypothesis testing 

Very long run, slow to 
compute, maybe slower 
and overloaded machine. 



Distributing SMC – Naïve Approach 
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CORE 

MASTER 



Distributing SMC – Naïve Approach 
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Pr[#<=20000](<> Master.OK ) 
Appr. ½ min 

Pr[#<=20000](<> Master.NOK ) 
Appr. 10 min 

Solving Bias [Younes’05] 
 
Queue the results at a master, use 
Round-Robin between nodes to accept 
the results. 
 



Our Implementation 

• Use a batch of B (e.g 10) runs, transmit one count per 
batch. 

• Use asynchronous communication (MPI) 
• Queue results at the master and wait only when the 

buffer (size=K) is full. 
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Master waits if needed 
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Incoming messages from cores! 

K 



Our Implementation 

• Senders have a buffer of (K) asynchronously sent 
messages and blocks only when the buffer is full. 

• The master periodically add results in the buffer. 
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Update “r”, if can’t decide, next 

Update “r”, if can’t decide, next 

Update “r”, if can’t decide, next 

Update “r”, if can’t decide, continue 
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Results 
16, 32, 128 cores, Vary Buffer & Batch Sizes 

“Small” model: Exhibit expected behaviour. 

“Big” model: Amortize the differences. 



Checking DSMC 

• We can model the algorithm inside UPPAAL. 

– Run SMC on it, even DSMC! 
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Slave Node 

Pr[# <= 100](<> Train(5).Cross) 

x=0

Safe

Stop

x=0

x=0

x=0

x<=10

x>=3

Cross

Appr

x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N
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Stop
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x=0

Safe

Stop

x=0

x=0
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Cross
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x>=10

Start

x>=7

stop[id]?

leave[id]!

appr[id]!

x<=5

x<= 15x<=20

go[id]?

(1+id):N*N

enqueue(e)

dequeue()

enqueue(e)

e == front()
len > 0

Stopping

Free

Occ

len == 0

leave[e]?

stop[tail()]!appr[e]?

appr[e]?

e : id_t

go[front()]!

e : id_t

e:id_t

train gate 
model 



Master Node 
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Read batch. 

Exact decision. 

Safe approximate 
decision. 



Results 

NFM'12 26 

N=16 
B=1..10 
K=1,2,4,8 

Can predict performance. 
Can derive more information, 
e.g., processor usage. 
Validate implementation. 

Property used: 
E[time<=1000; 1000] (max: usage) 
 
Conclusions: 
K=1 has huge effect and should be avoided. 
K=2 has effect if B<20. 
K>2 are indistinguishable on homogeneous cluster. 
K>2 and B>20: number of simulations scale      
 linearly to the number of cores used. 



Case Studies 
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FIREWIRE BLUETOOTH 

LMAC 
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LMAC 



Lightweight Media Access Control (LMAC) 

• Problem domain: 

– communication scheduling 

• Targeted for:  

– self-configuring networks,  

– collision avoidance,  

– low power consumption 

• Application domain: 

– wireless sensor networks 
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LMAC Protocol Design  

• Four phases: 
– Initialization (listen until a neighbor is heard) 

– Waiting (delay a random amount of time frames) 

– Discovery (wait for entire frame and note used slots) 

– Active  
• choose free slot,  

• use it to transmit, including info about detected collisions 

• listen on other slots 

• fallback to Discovery if collision is detected 

• Only neighbors can detect collision and tell the 
user-node that its slot is used by others 
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adopted from A.Fehnker, L.v.Hoesel, A.Mader 

added power 

discovery 

random wait 

active usage 

initialization 
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http://academic.research.microsoft.com/Author/2311816/ansgar-fehnker
http://academic.research.microsoft.com/Author/1428994/lodewijk-van-hoesel
http://academic.research.microsoft.com/Author/636374/angelika-mader


Classical vs. Statistical MC 

• A.Fehnker, L.v.Hoesel and A.Mader used 
UPPAAL to explore 4- and 5-node topologies 
and found cases with perpetual collisions. 

• However they could not know whether the 
next collisions are inevitable. 

• Statistical MC offers an insight by calculating 
the probability over the number of collisions. 

 + estimated cost in terms of energy. 
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LMAC Simple Statistics for 4 Nodes 

• Wait distribution: 

– geometric 

– uniform 

• Network topology: 

– chain 

– ring 

• Collision probability 

• Collision count 

• Power consumption Pr[<=160] (<> col_count>0) 

Pr[collisions<=50000] (<> time>=1000) 

no collisions 

<12 collisions 

zero 

Pr[energy <= 50000] (<> time>=1000) 
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LMAC with Parameterized Topology 

[0.36; 0.39] 

topology 
collision 

probability 

[0.29; 0.36] 

[0.26; 0.30] 

[0.19; 0.21] 

topology 
collision 

probability 

[0.08; 0.19] 

[0.11; 0.13 ] 

[0.08; 0.15] 

[0.049;  0.050] 

Pr[time<=200] (<> col_count>0) 

Collision probability in a 4 node network of a randomly generated topology: 

(star) 

(ring) 

(chain) 
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10-Node Chain 

0 

The first collision: 
happens before 800tu Collision counts after 1000tu 

The first collisions can be as late as 800tu. 
It is very likely (>94%) that  
 there will be 0 collisions. 
But if they happen, some are perpetual. 

Collision counts after 2000tu: 
the numbers are doubled, 
there’s gap of zeros –  
collision count is diverging 
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10-Node Ring 

The first collision: 
happens before 1000tu 

Collision counts after 1000tu 

Collision counts after 2000tu: 
the numbers are doubled –  
perpetual collisions 

The first collisions can be as late as 920tu. 
It is very likely (>90%) that  
 there will be 0 collisions. 
But if they happen, they are perpetual. 

0 0 

0 0 

NFM'12 36 



10-Node Star 

The first collision: 
happens before 500tu 

Collision counts after 1000tu 

Collision counts after 2000tu: 
the numbers are doubled –  
perpetual collisions 

The first collisions happen before 500tu. 
It is unlikely (8.2%) that  
 there will be 0 collisions. 
And if they happen, they are perpetual. 

0 0 0 

0 0 0 
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10-Node Random Topologies 
Generated 10000 random topologies 
Checked the property: 
 Pr[time<=2000](<> col_count>42) 
 (perpetual collisions are likely) 
One instance on a laptop takes ~3.5min 
All 10000 instances on 32-core cluster: 409.5min 
There were: 
6091 with >0 probability (shown in histogram) 
3909 instances with 0 probability (removed) 
The highest probability was 0.63 
While star topology yields 0.91 
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Conclusion 

• Preliminary experiments indicate that 
distributed SMC in UPPAAL scales very nicely. 

 

• More work to identify impact of parameters 
for distributing individual SMC? 

 

• UPPAAL 4.1.9 available  
   (support for SMC, DSMC, 64-bit,..) 
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End 


